7.6 Surface integrals of vector fields

We learn

e anintegral of a vector field F over a
parametrized surface

e Interpretation of this integral as flux across the
surface

e What an orientation of a surface is

e Some surfaces cannot be oriented

e How a parametrization determines an
orientation

e Practice evaluating these integrals

What we can do without:

e  Most of the formulas at the end of 7.6, on
page 411.

e Itis not worth remembering special formulas
for surfaces that are graphs, or for spheres.




The definition

We take
e avector field F:RA3 -> RA3
e a parametrized surface
Phi : D -> RA3 with Phi(D)=S

We define what the book calls the surface

integral of F over Phi. | would prefer to call it
the integral of the flux form of F, or the flux
integral of F.
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Later, when we know what an orientation of S
is, we might write:
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Example:

Find the flux of the vector field

F(x,y,2) = (y z, xA2, xA\2yz) across the half-
cylinder

Phi( theta, z ) = (2 cos theta, 2 sin theta 7)
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What does it mean? pre_clagg Warm—up!!!

L@ijk

(T x—r\) The picture on the left appeared at the end of

—— class on Friday. Was it intended to help us

< T understand
/ o
/ a. how to set up an integral
o et n= Ty | b, how to find the area of a surface

" T

- q T> ud hiS KQO‘LM%{ c. what the flux of a vector field is
s >< V
: i VAN /d. why the the integral computes the flux of
%

7%[ S the vector field across the surface
:U 4, m*Tv\ I TMXTA\ dudv
D

o : f the above.
[[(uxﬂ(l e. none of the above

i jjbt - [T Ty | dudy :LF‘Q A5




The second half of section 7.6: Orientations

We learn:

what is an orientation?

Descriptions like “the normal points out”.

A parametrization determines an orientation
Terminology: consistent or compatible with
the orientation

Unit normal

We can only do flux integrals on orientable
surfaces.

Theoretical things, not proved: the integral
does not depend on the choice of
parametrization, provide it is consistent for the
orientation.

We don't need theorem 5 or Gauss'’s law of
the special formulas that arise when the
surface is a graph.

Pages 410 and 411 we only need 1a and 1b.




Orientation of surfaces

Definition: An orientation of a surface S is g
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Parametrizations Phi: D -> RA3 determine

orientations.
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Example.

Find [[_S F-dS where F(x,y,z) = (0, 0, z) and
S is the part of the cone z =V x/\2 + yA2
where z <1, oriented by a downward pointing
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